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Solitonic analysis to the (2+1) dimensional RLW 
equation with the sense of beta derivatives 
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Abstract—The exp(−∅(𝜉)) expansion approach is used to build unique explicit and precise solutions as well as solitary wave solutions for the 

Regularized Long Wave (RLW) equation with the sense of beta derivative in this study. We can acquire exact explicit singular soliton, two soliton 
and three soliton solutions with the help of Maple. By giving specific values to the parameters, solitary wave solutions can be generated from precise 
solutions. Furthermore, we may infer that our preferred technique is powerful, simple, and easy to use, and that it provides far more trustworthy 
innovative precise answers for mathematical physics and engineering treatments. 

Index Terms— Regularised long wave equation; Beta derivative; exp(−∅(𝜉))-expansion method; Exact solution, Mathematical physics, 

Nonlinear dynamics, PDEs 

——————————      —————————— 

1 INTRODUCTION  

Fractional calculus has been one of the most pressing concerns 

in nonlinear dynamics for decades. In mathematical physics, 

the majority of practical issues are now translated into 

fractional partial differential equations (FPDEs) models. In the 

field of applied discipline and engineering, the study of NFPDE 

traveling wave solutions plays a vital role in defining the nature 

of nonlinear issues. Although certain nonlinear PDEs are 

integrable, integrating them may not be as simple. The 

expansion of wave and shallow water waves, computational 

fluid mechanics, heat flow phenomena, Geophysics, plasma 

physics, optical fibers, electricity, chemical kinematics, 

Mathematical biology, and quantum mechanics are all 

examples of nonlinear wave structures that have been used to 

solve various problems in physical science [1-3]. As a result, 

numerous researchers have worked hard to develop a novel 

and true precise solution to time-fractional NPDEs  extended 

tanh-function (mETF) method [4-6], the homogeneous 

balancing method [7,8], the Jacobi elliptic expansion technique 

[9], the Hirotas bilinear scheme [10], the extended simple 

equation technique [11], exp(−∅(𝜉)) expansion [12-16], the 

exponential function method [17],  (
𝐺′

𝐺
,
1

𝐺
) expansion method 

[18], Sardar sub-equation methods [19], the relationships 

between the parameters are analyzed inside an expected 

outcome with parameters, which is meant to represent the 

result of leading equations. 

The notion is modestly built on the analogy between ODEs with 

constant coefficients and exponential-type outcomes. 

Exponential, trigonometric, hyperbolic, or rational functions, 

among others, are examples of predicted outcomes. 

Furthermore, spending analytical performances were used to 

determine the interaction of numerous sorts of waves. In [20] 

Khalil presented a new definition of derivative called 

“conformable derivative”, this derivative satisfied some 

conventional properties, for instance, the chain rule. Atangana 

in [21] investigated some properties of this derivative, the 

authors proved related theorems and introduced new 

definitions. Interesting works related with this operator are 

given by [22-23]. Recently Abdon Atangana in [24] proposed the 

“beta-derivative”. The version proposed satisfies several 

properties that were as limitation for the fractional derivatives 

and has been used to model some physical problems. These 

derivatives may not be seen as fractional derivative but can be 

considered to be a natural extension of the classical derivative 

[20-33].  

The beta-derivative is defined as in Ref. [24]  

𝑇𝑥
𝛼{𝑓(𝑥)} = lim

∈→0

𝑓 (𝑥+∈ (𝑥 +
1
Γ(𝛼)

)
1−𝛼

) − 𝑓(𝑥)

∈0
𝐴  

Some properties for the proposed beta-derivative are [24] 

(i) Assuming that, a and b are real numbers, 𝑔 ≠ 0 and𝑓 are 

two functions 𝛽-differentiable and 𝛽 ∈ 90,1], we have 
𝑇𝑥
𝛼{𝑎𝑓(𝑥) + 𝑏𝑔(𝑥)} = 𝑎0

𝐴 𝑇𝑥
𝛼

0
𝐴 𝑓(𝑥) + 𝑏 𝑇𝑥

𝛼
0
𝐴 𝑔(𝑥). 

(ii) 𝑇𝑥
𝛼

0
𝐴 {𝑐} = 0, For c any given constant. 

(iii) 𝑇𝑥
𝛼

0
𝐴 {𝑓(𝑥). 𝑔(𝑥)} = 𝑔(𝑥) 𝑇𝑥

𝛼
0
𝐴 {𝑓(𝑥)} + 𝑓(𝑥) 𝑇𝑥

𝛼
0
𝐴 {𝑔(𝑥)}. 

(iv) 𝑇𝑥
𝛼

0
𝐴 (

𝑓(𝑥)

𝑔(𝑥)
) =

𝑔(𝑥) 𝑇0
𝐴 {𝑓(𝑥)}−𝑓(𝑥) 𝑇𝑥

𝛼
0
𝐴 {𝑔(𝑥)}

𝑔2(𝑥)
. 

Considering ∈= (𝑥 +
1

Γ(𝛼)
)
𝛼−1

ℎ, and ℎ → 0, when ∈→ 0, 

therefore we have 

𝑇𝑥
𝛼

0
𝐴 {𝑓(𝑥)} = (𝑥 +

1

Γ(𝛼)
)
1−𝛼 𝑑𝑓(𝜉)

𝑑𝑥
, 

With 𝜉 =
𝑙

𝛼
(𝑥 +

1

Γ(𝛼)
)
𝛼

, 

Where 𝑙 is a constant. 
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(v) 𝑇𝑥
𝛼

0
𝐴 (

𝑓(𝜉)

𝑔(𝑥)
) = 𝑙

𝑑𝑓(𝜉)

𝑑𝜉
. 

The proofs of the above relations are given by Atangana in [25]. 

The major purpose of this research is to solve the RLW equation 

in the sense of beta derivative. Another thing to keep in mind is 

that in order to solve this equation, we used a mathematical 

approach called the expansion method, which has never been 

used previously to solve our chosen equation with the sense of 

beta derivative. As a result, we may say that our solutions are 

innovative in the sense of beta derivatives. Rest of the article is 

decorated as follows. 

 

2. DESCRIPTION OF THE METHOD 

In this section, we will describe exp(−∅(𝜉))-expansion method 

by term. Consider a nonlinear partial differential equation in 

the following form 

   ℜ(𝑈, 𝑈𝑥𝑥 , 𝑈𝑥𝑧 , 𝑈𝑥𝑦 , 𝑈𝑥𝑡𝑡 , …… . ) = 0          (1)                    

Where 𝑈 = 𝑈(𝑥, 𝑦, 𝑧, 𝑡)  is an unknown function, ℜ is a 

polynomial of 𝑈, its different type partial derivatives, in which 

the nonlinear terms and the highest order derivatives are 

involved. 

Step-1. Now we consider a transformation variable to convert 

all independent variable into one variable, such as  

𝑈(𝑥, 𝑡) = 𝑢(𝜉), 𝜉 = 𝑘𝑥 + 𝑙𝑦 + 𝑚𝑧 ± 𝑉𝑡          (2) 

By implementing this variable Eq. (2) permits us reducing Eq. 

(1) in an ODE for 𝑈(𝑥, 𝑡) = 𝑢(𝜉  

𝑃(𝑢, 𝑢′, 𝑢′′, 𝑢′′′, …… . )     (3) 

Step-2. Suppose that the solution of ODE Eq. (3) can be 

expressed by a polynomial in exp(−∅(𝜉)) as follow                                                        

 𝑢 = ∑ 𝑎𝑖exp(−∅(𝜉))
𝑖𝑚

𝑖=0 ,   (4) 

where the derivative of ∅(𝜉) satisfies the ODE in the following 

form  

  ∅′(𝜉) = exp(−∅(𝜉)) + 𝜇 exp(∅(𝜉)) + 𝜆           (5)                                                     

  then the solutions of ODE Eq. (6) are 

Case I: 

Hyperbolic function solution (when 𝜆2 − 4𝜇 > 0, 𝜇 ≠ 0): 

 ∅(𝜉) = ln

(

 
 
−√𝜆2−4𝜇 tanh(

√𝜆2−4𝜇

2
(𝜉+𝐶))−𝜆

2𝜇

)

 
 

                     

and    ∅(𝜉) = ln

(

 
 
−√𝜆2−4𝜇 coth(

√𝜆2−4𝜇

2
(𝜉+𝐶))−𝜆

2𝜇

)

 
 

 

 

 

Case II: 

 

Trigonometric function solution (when 𝜆2 − 4𝜇 < 0, 𝜇 ≠ 0)): 

   ∅(𝜉) = ln

(

 
 
√4𝜇−𝜆2 tan(

√4𝜇−𝜆2

2
(𝜉+𝐶))−𝜆

2𝜇

)

 
 

                      

and  ∅(𝜉) = ln

(

 
 
√4𝜇−𝜆2 cot(

√4𝜇−𝜆2

2
(𝜉+𝐶))−𝜆

2𝜇

)

 
 

 

Case III: 

Exponential function solution (when 𝜆2 − 4𝜇 > 0, 𝜇 = 0): 

               ∅(𝜉) = − ln (
𝜆

exp(𝜆(𝜉+𝐶))−1
)            

Case IV: 

Rational function solution (when 𝜆2 − 4𝜇 = 0, 𝜇 ≠ 0, 𝜆 ≠ 0): 

   ∅(𝜉) = ln (−
2(𝜆(𝜉+𝐶)+2)

𝜆2(𝜉+𝐶)
)        

Case V: 

Other solution (when 𝜆2 − 4𝜇 = 0, 𝜇 =, 𝜆 = 0) 
 ∅(𝜉) = ln(𝜉 + 𝐶)     

Where 𝑎𝑖 , 𝑉, 𝜆; 𝑖 = 0,1,… ,𝑚 and 𝜇 are constants to be 

determined later. The positive integer 𝑚 can be determined by 

considering the homogeneous balance between the highest 

order derivatives and nonlinear terms appearing in ODE (8). 

Step-3. By substituting Eq. (4) into Eq.(3) and using the ODE 

(5), collecting all  same order of exp(−∅(𝜉)) together, then we 

execute an polynomial form of exp(−∅(𝜉)). Equating each 

coefficients of this polynomial to zero, yields a set of algebraic 

system for 𝑎𝑖 , 𝑉, 𝜆; 𝑖 = 0,1, … ,𝑚 and 𝜇. 

Step-4.  Assuming that the constants 𝑎𝑖 , 𝑉, 𝜆; 𝑖 = 0,1, … ,𝑚 and 𝜇 

can be obtained by solving the algebraic system, since the 

general solutions of the auxiliary ODE (5) have been well 

known for us, then substituting 𝑎𝑖 , 𝑉, 𝜆; 𝑖 = 0,1, … ,𝑚, and the 

general solutions of Eq.(4) into Eq.(5). Thus we attain exact and 

explicit traveling wave solutions of nonlinear partial 

differential equation (1).                                                             

3. APPLICATION OF THE RLW EQUATION 
In this segment, we utilized our stated method to the RLW 

equation [26]. Here our selected RLW equation is written in beta 

derivative form as follows (according to ref. 24). 

.,and,0,0),(),()(),(),( 0

2

0

2

000 RyxttxuTtxuTquTptxuTtxuT t

A

x

A

x

A

x

A

t

A 


                                             (6) 

Here  is the fractional constant with the interval .10   

𝜓(𝑥, 𝑡) = 𝜓(𝜉), where𝜉 =
𝑟

𝜃
(𝑥 +

1

Γ(𝜃)
)𝜃 +

𝑠

𝜃
(𝑡 +

1

Γ(𝜃)
)𝜃      (7)                                                      

By applying this wave variable of Eq. (16) into Eq. (15) and 

assimilating with respect to , we get this regular differential 

equation form. 

,0)( 222  usrqupurs                                     (8)                                                                                                                                                                                

where u represents the differentiating of u  with respect to

 .With the homogeneous complementary of the uppermost 

order nonlinear term 2u and the uppermost linear term u  , we 

find the value of N = 2. As a consequence, Eq. (4) can be printed 
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in the following form. 

.))}({())(()( 2

210   AAA           (9)                                                                                                 

Henceforth we discriminate Eq. (9) regarding   and putting 

the required value uuu ,, 2
in Eqn.(8). 

Therefore, we finally get some polynomials and equate the 

coefficients )(ie equal to zero, where

......,3,2,1,0 i  we get some system of equations as 

follows.  

,02 00

2

0

2

2

22  sArAApAsr   

,022 11101

22  sArAAApAsr   

,028 22

2

1202

22  sArApAAApAsr   

,022 211

222  AApAsr  

.06
2

22

222  AAsr   

Now by solving this system of equations, we find two sets of 

solutions. In this study we have considered following set.  

Set 1 

,

1161

8

1
2

2

p

s

ss

r


 

  

,sr   

,

1161

8

1

2

1
2

2

0
p

s
s

ss

A











 

,01 A  

,

1161

8

1

2

3
2

3

2
p

s
s

s

A

























  

Set-1 

Family 1 

2

2

3

1

2

3

2,1
))(tanh(

1161

8

1

2

3

))(tanh(

1161

8

1

2

1
)(

Cp

s
sq

sq

C

A

p

s
s

sq




































 

where 𝜉 =
𝑟

𝜃
(𝑥 +

1

Γ(𝜃)
)𝜃 +

𝑠

𝜃
(𝑡 +

1

Γ(𝜃)
)𝜃                                                         

Family 2 

2

2

3

1

2

3

4,3
))(coth(

1161

8

1

2

3

))(coth(

1161

8

1

2

1
)(

Cp

s
nq

nq

C

A

p

s
nq

sq




































                                       

where 𝜉 =
𝑟

𝜃
(𝑥 +

1

Γ(𝜃)
)𝜃 +

𝑠

𝜃
(𝑡 +

1

Γ(𝜃)
)𝜃                                                          

Family 1 

2

2

3

1

2

3

6,5
))(tan(

1161

8

1

2

3

))(tan(

1161

8

1

2

1
)(

Cp

s
s

sq

C

A

p

s
sq

sq




































  

where 𝜉 =
𝑟

𝜃
(𝑥 +

1

Γ(𝜃)
)𝜃 +

𝑠

𝜃
(𝑡 +

1

Γ(𝜃)
)𝜃                                                          

Family 2 

2

2

3

1

2

3

8,7
))(cot(

1161

8

1

2

3

))(cot(

1161

8

1

2

1
),(

Cp

s
sq

sq

C

A

p

s
sq

sq

tx



































 

 

where 𝜉 =
𝑟

𝜃
(𝑥 +

1

Γ(𝜃)
)𝜃 +

𝑠

𝜃
(𝑡 +

1

Γ(𝜃)
)𝜃   
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4. Results and Discussions 
The physical elucidation of the established precise traveling 

wave solutions to the RLW equation will be discussed in this 

section. We show the graphical depiction of these solutions and 

show how to get various types of solutions using a combination 

of appropriate parameters. As a result, we were able to show 

the 3D and 2D representation of the single soliton, two soliton, 

three soliton   and other forms of soliton, by selecting various 

free parameters with the appropriate physical explanation. We 

utilized computational computer software Maple programs to 

depict the graphs. We've exhibited and concentrated on several 

key geometrically interpretable graphs that have physical 

explanations in mathematical physics and water wave 

mechanics among each exact traveling-wave solution. The 

graphical representations of our obtained solutions are as 

follows.  

 

 
 

Fig.1. Represents the singular soliton shape for the function solution  𝜓1,2(𝜉) for the parameters𝜆 = 3, 𝜇 = −2, 𝜃 = 0.5, 𝑐 =

0.5, 𝑙 = 1, 𝑠 = 1, 𝑟 = 1.9, 𝑝 = 1.5, 𝑞 = 1, 𝐴0 = 1, and𝐴2 = 1. Left and right figure show the 3D and 2D graph respectively.   

 

 

Fig.2 Represents the two soliton shape for the function solution  𝜓3,4(𝜉) for the parameters𝜆 = 3, 𝜇 = −2, 𝜃 = 0.5, 𝑐 = 1.5, 𝑙 =

1, 𝑠 = 1, 𝑟 = −1.9, 𝑝 = 1.5, 𝑞 = 1, 𝐴0 = 1.7, and𝐴2 = 1. Left and right figure show the 3D and 2D graph respectively. 
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Fig.3 Represents the three soliton shape for the function solution  𝜓5,6(𝜉) for the parameters𝜆 = 3, 𝜇 = 2, 𝑐 = 2.5, 𝜃 = 0.5, 𝑠 =

9.6, 𝑟 = 2.9, 𝑝 = 1.5, 𝑞 = 1.8, 𝐴0 = 1.9, and𝐴2 = 1. Left and right figure show the 3D and 2D graph respectively. 

 

 

 

Fig.4 Represents the three singular soliton shape for the function solution  𝜓7,8(𝜉) for the parameters𝜆 = 3, 𝜇 = 2, 𝑐 = 1.5, 𝜃 =

0.5, 𝑠 = 1, 𝑟 = 1.9, 𝑝 = 1.5, 𝑞 = 1, 𝐴0 = 1, and𝐴2 = 1. Left and right figure show the 3D and 2D graph respectively. 

5. Conclusions 
The exp(−∅(𝜉)) technique is used to investigate accurate 
traveling-wave solutions to time-fractional RLW equations in 
this study. The equations are reduced to certain ODEs using 
companionable wave transform. The predicted solutions are 
then swapped for the ODE's resulting form. When the 
coefficients of like power are compared to zero, it signifies some 
SAE. The parameters' relationships are shown through solving 
this system. Unwavering explicitly are certain physical and 

composite solutions that are configurations of powers of 
hyperbolic tangent, cotangent, tangent, cotangent, and secant, 
cosecant functions. Using maple, graphical representations of 
various solutions are rendered in several finite fields to explore 
the implications of parameters. As a result, we require that the 
derived solutions in this study be unique, as they may be more useful in the 

study of time-fractional nonlinear water wave mechanics and nonlinear 

physical processes. 
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